Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747900

RESUMO

This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.

2.
J Control Release ; 362: 381-395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37579977

RESUMO

This review highlights the importance of controlling the digestion process of orally administered lipid-based delivery systems (LBDS) and their performance. Oral LBDS are prone to digestion via pancreatic lipase in the small intestine. Rapid or uncontrolled digestion may cause the loss of delivery system integrity, its structural changes, reduced solubilization capacity and physical stability issues. All these events can lead to uncontrolled drug release from the digested LBDS into the gastrointestinal environment, exposing the incorporated drug to precipitation or degradation by luminal proteases. To prevent this, the digestion rate of orally administered LBDS can be estimated by appropriate choice of the formulation type, excipient combinations and their ratios. In addition, in vitro digestion models like pH-stat are useful tools to evaluate the formulation digestion rate. Controlling digestion can be achieved by conventional lipase inhibitors like orlistat, sterically hindering of lipase adsorption on the delivery system surface with polyethylene glycol (PEG) chains, lipase desorption or saturation of the interface with surfactants as well as formulating LBDS with ester-free excipients. Recent in vivo studies demonstrated that digestion inhibition lead to altered pharmacokinetic profiles, where Cmax and Tmax were reduced in spite of same AUC compared to control or even improved oral bioavailability.

3.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958606

RESUMO

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Assuntos
Portadores de Fármacos , Nanoestruturas , Humanos , Ratos , Feminino , Animais , Portadores de Fármacos/química , Lipossomos , Hormônio Foliculoestimulante , Células CACO-2 , Nanoestruturas/química , Administração Oral , Cápsulas , Oligopeptídeos , Tamanho da Partícula
4.
Mol Pharm ; 20(2): 1307-1322, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36680524

RESUMO

The present study deals with the development of dexamethasone (DM)-loaded implants using ester end-capped Resomer RG 502 poly(lactic acid-co-glycolic acid) (PLGA) (502), acid end-capped Resomer RG 502H PLGA (502H), and a 502H:502 mixture (3:1) via hot melt extrusion (HME). The prepared intravitreal implants (20 and 40% DM loaded in each PLGA) were thoroughly investigated to determine the effect of different end-capped PLGA and drug loading on the long-term release profile of DM. The implants were characterized for solid-state active pharmaceutical ingredient (APIs) using DSC and SWAXS, water uptake during stability study, the crystal size of API in the implant matrix using hot-stage polarized light microscopy, and in vitro release profile. The kinetics of PLGA release was thoroughly investigated using quantitative 1H NMR spectroscopy. The polymorph of DM crystal was found to remain unchanged after the extrusion and stability study. However, around 3 times reduction in API particle size was observed after the HME process. The morphology and content uniformity of the RT-stored samples were found to be comparable to the initial implant samples. Interestingly, the samples (mainly 502H) stored at 40 °C and 75% RH for 30 d demonstrated marked deformation and a change in content uniformity. The rate of DM release was higher in the case of 502H samples with a higher drug loading (40% w/w). Furthermore, a simple digital in vitro DM release profile derived for the formulation containing a 3:1 ratio of 502H and 502 was comparable with the experimental release profile of the respective polymer mixture formulation. The temporal development of pores and/or voids in the course of drug dissolution, evaluated using µCT, was found to be a precursor for the PLGA release. Overall, the release profile of DM was found to be dependent on the PLGA type (independent of subtle changes in the formulation mass and diameter). However, the extent of release was found to be dependent on DM loading. Thus, the present investigation led to a thorough understanding of the physicochemical properties of different end-capped PLGAs and the underlying formulation microstructure on the release profile of a crystalline water-insoluble drug, DM, from the PLGA-based implant.


Assuntos
Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Dexametasona , Água/química
5.
Pharmaceutics ; 14(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36559111

RESUMO

The aim of this study was to develop a continuous pilot-scale solidification and characterization of self-emulsifying drug delivery systems (SEDDSs) via hot melt extrusion (HME) using Soluplus® and Kollidon® VA-64. First, an oil-binding capacity study was performed to estimate the maximal amount of SEDDSs that the polymers could bind. Then, HME was conducted using a Coperion 18 mm ZSK18 pilot plant-scale extruder with split-feeding of polymer and SEDDS in 10, 20, and 30% w/w SEDDSs was conducted. The prepared extrudates were characterized depending on appearance, differential scanning calorimetry, wide-angle X-ray scattering, emulsification time, droplet size, polydispersity index, and cloud point. The oil-binding studies showed that the polymers were able to bind up to 50% w/w of liquid SEDDSs. The polymers were processed via HME in a temperature range between 110 and 160 °C, where a plasticizing effect of the SEDDSs was observed. The extrudates were found to be stable in the amorphous state and self-emulsified in demineralized water at 37 °C with mean droplet sizes between 50 and 300 nm. A cloud point and phase inversion were evident in the Soluplus® samples. In conclusion, processing SEDDSs with HME could be considered a promising alternative to the established solidification techniques as well as classic amorphous solid dispersions for drug delivery.

6.
AAPS PharmSciTech ; 23(7): 238, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002600

RESUMO

The current study elucidates the improved drug loading of paclitaxel (PTX) in lipid- and D-α-tocopheryl polyethylene glycol succinate (TPGS)-based core-shell-type lipid nanocapsules (PTX-TPGS-LNC) for augmenting the therapeutic efficacy and curbing the toxicity. PTX-TPGS-LNCs were formulated by employing anti-solvent precipitation technique and displayed a particle size of 162.1 ± 4.70 nm and % practical drug loading of 15.04 ± 2.44%. Electron microscopy revealed that PTX-TPGS-LNCs have spherical morphology and the inner core was surrounded by a relatively lighter region, i.e., layer of lipids and TPGS. The nature of loaded PTX inside the PTX-TPGS-LNC was also confirmed using DSC and PXRD analysis. The in vitro release study showed biphasic and sustained release pattern of PTX from PTX-TPGS-LNC and it showed ~ threefold higher PTX uptake in MCF-7 cell line in comparison to free PTX. Moreover, it was apparent from the cytotoxicity assay that PTX-TPGS-LNC displayed higher cytotoxicity in MCF-7 cells and revealed ~ 2.92-fold decrease in IC50 value as against free PTX when incubated for 72 h. The apoptotic index in case of PTX-TPGS-LNC was ~ twofold higher than free PTX. The pharmacokinetic profile of PTX-TPGS-LNC revealed a ~ 3.18-fold increase in t1/2 and a ~ 2.62-fold higher AUC(0→∞) compared to Intaxel®. Finally, treatment with PTX-TPGS-LNC demonstrated significant lowering in the % tumor burden and serum toxicity markers compared to marketed formulation Intaxel®. Thus, the lipid- and TPGS-based core-shell-type LNC with high PTX loading can advance the existing standards of therapy for overshadowing cancer.


Assuntos
Nanocápsulas , Paclitaxel , Linhagem Celular Tumoral , Humanos , Lipídeos , Polietilenoglicóis , Vitamina E , alfa-Tocoferol
7.
AAPS PharmSciTech ; 23(7): 233, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002610

RESUMO

The manufacturing of biopharmaceutical drug solutions can involve close contact with various polymeric components, including common filter membranes. Potential leachable substances from filters may interact with the protein and thereby increase the structural damage and aggregation. The main aim of the study deals with the assessment of extractable and leachable (E/L) from different filters and the potential effect of E/Ls on protein (human granulocyte-colony stimulating factor (rh-GCSF) stability. The present study examines the E/L profile of five different polymeric filter membranes using various chromatographic techniques including LC-MS and GC-MS. In order to investigate their effect on protein stability, G-CSF (human granulocyte colony-stimulating factor) formulations were spiked with filter leachable stock solutions at two different pH levels. The spiked formulations were further analyzed with respect to their aggregation behavior. The results demonstrated a higher E/L content in the case of polyamide (PA), polycarbonate (PC), and polyethersulfone (PES) filters as compared to the polytetrafluoroethylene (PTFE) and regenerative cellulose (RC) filter materials. The E/L from RC and PES was found surface-active, whereas E/L from PA and RC significantly altered the particle size/structure resulting in the aggregation of proteins. Furthermore, bisphenol A was found to be one of the E/L substances from PC filters and can impose significant health problems when administered along with pharmaceutical products. The present study reports a qualitative rank ordering of the filter membranes in terms of their propensity to generate E/Ls and thus can be helpful in selecting a suitable membrane filter.


Assuntos
Celulose , Proteínas , Cromatografia Líquida , Contaminação de Medicamentos/prevenção & controle , Embalagem de Medicamentos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Espectrometria de Massas , Preparações Farmacêuticas , Proteínas/química
8.
J Pharm Biomed Anal ; 217: 114791, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35550490

RESUMO

Cellulose acetate (CA) is the main component of controlled-release (CR) coating of formulations such as osmotic-controlled release oral delivery system (OROS) and CR microspheres. Despite multiple applications, there are limited or no reports dealing with the characterization and quantification of CA in the formulated systems. Thus, the present investigation deals with the development of the Quantitative Carbon-13 Nuclear Magnetic Resonance (q13CNMR) spectroscopy method for the determination of CA amount in the CR microsphere formulations. The developed q13CNMR method was also verified using control CA samples from marketed OROS formulation. Thereafter, the concentration of CA in the microspheres was calculated. Furthermore, the impact of different concentrations of CA on the critical quality attributes such as the drug release profile from the formulation was investigated. The study demonstrated the CA coating levels to be inversely proportional to the extent and rate of release of API. The developed q13CNMR method was found to be accurate and precise and can be explored further to investigate the effect of different stability conditions on the degree of polymerization and degradation of CA resulting in altered quality of pharmaceutical products.


Assuntos
Celulose , Excipientes , Celulose/análogos & derivados , Celulose/química , Preparações de Ação Retardada , Espectroscopia de Ressonância Magnética , Microesferas
9.
Int J Pharm ; 622: 121852, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35618179

RESUMO

The present investigation demonstrates the preparation of solid self nanoemulsfying drug delivery system (sSNEDDS) to enhance stability and bioavailability of Erlotinib (ERL) via the oral route. Capmul®MCM EP (CPM EP, oil), Cremophor® RH 40 (CMR RH 40, surfactant), and LBF CS (LBF CS, cosurfactant) were chosen as chief components for preparing Liquids SNEDDS (L-ERL-SNEDDS) based on solubility and emulsion forming ability. Pseudo ternary phase diagram and constrained mixture designs were applied to identify the self-emulsifying area and it was found that CPM EP, CMR RH 40, and LBF CS in the ratio of 59:11:30 showed optimized particle size (110.08 nm), with narrow PDI (0.114) and high ERL loading capacity (14.31 mg/g). Adsorption method was implemented for solidification of L-ERL-SNEDDS. Among various solid carriers were studied, Aerosil® 200 (A200) was finalized based on free flowing property and reconstitution ability. DSC and XRD studies revealed that crystallinity of drug was reduced in developed system. The developed formulation (named as, A200-ERL-sSNEDDS) showed increased cytotoxicity and apoptosis in PANC-1 and MIA PaCa-2 cells. Pharmacokinetic studies revealed ∼2.2 times increase in AUC0-∞values in case of A200-ERL-sSNEDDS as compared to free ERL. Thus current strategy can be extrapolated for delivering of poorly soluble drugs via oral route.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas , Administração Oral , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos/métodos , Emulsões , Cloridrato de Erlotinib , Sistemas de Liberação de Fármacos por Nanopartículas , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade
10.
Mol Pharm ; 19(2): 532-546, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34958588

RESUMO

The present study systematically investigates the effect of annealing conditions and the Kolliphor P 407 content on the physicochemical and structural properties of Compritol (glyceryl behenate) and ternary systems prepared via melt cooling (Kolliphor P 407, Compritol, and a hydrophilic API) representing solid-lipid formulations. The physical properties of Compritol and the ternary systems with varying ratios of Compritol and Kolliphor P 407 were characterized using differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SWAXS) and infrared (IR) spectroscopy, and hot-stage microscopy (HSM), before and after annealing. The change in the chemical profiles of different Compritol components as a function of annealing was evaluated using 1H NMR spectroscopy. While no change in the polymorphic form of API and Kolliphor P 407 occurred during annealing, a systematic conversion of the α- to ß-form was observed in the case of Compritol. Furthermore, the polymorphic transformation of Compritol was found to be dependent on the Kolliphor P 407 content. As per the Flory-Huggins mixing theory, higher miscibility was observed in the case of monobehenin-Kolliphor P 407, monobehenin-dibehenin, and dibehenin-tribehenin binary mixtures. The miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin was confirmed by 1H NMR analysis. The observed higher miscibility of Kolliphor P 407 with monobehenin and 1,2-dibehenin is proposed as the trigger for the physical separation from the 1,3-diglyceride and triglycerides during melt solidification of the formulations. The phase separation is postulated as the mechanism underlying the formation of a stable ß-polymorphic form (a native form of 1,3-diglyceride) of Compritol upon annealing. This finding is expected to have an important implication for developing stable solid-lipid-surfactant-based drug formulations.


Assuntos
Excipientes , Tensoativos , Varredura Diferencial de Calorimetria , Composição de Medicamentos , Excipientes/química , Transição de Fase , Solubilidade , Tensoativos/química
11.
Pharmaceutics ; 13(2)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672439

RESUMO

The present work evaluates the food effect on the absorption of rivaroxaban (Riva), a BCS II drug, from the orally administered commercial immediate-release tablet (Xarelto IR) using physiologically based pharmacokinetic (PBPK) and conventional in vitro-in vivo correlation (IVIVC) models. The bioavailability of Riva upon oral administration of Xarelto IR tablet is reported to exhibit a positive food effect. The PBPK model for Riva was developed and verified using the previously reported in vivo data for oral solution (5 and 10 mg) and Xarelto IR tablet (5 and 10 mg dose strength). Once the PBPK model was established, the in vivo performance of the tablet formulation with the higher dose strength (Xarelto IR tablet 20 mg in fasted and fed state) was predicted using the experimentally obtained data of in vitro permeability, biorelevant solubility and in vitro dynamic dissolution data using United States Pharmacopeia (USP) IV flow-through cell apparatus. In addition, the mathematical IVIVC model was developed using the in vitro dissolution and in vivo profile of 20 mg strength Xarelto IR tablet in fasted condition. Using the developed IVIVC model, the pharmacokinetic (PK) profile of the Xarelto IR tablet in fed condition was predicted and compared with the PK parameters obtained via the PBPK model. A virtual in vivo PK study was designed using a single-dose, 3-treatment cross-over trial in 50 subjects to predict the PK profile of the Xarelto® IR tablet in the fed state. Overall, the results obtained from the IVIVC model were found to be comparable with those from the PBPK model. The outcome from both models pointed to the positive food effect on the in vivo profile of the Riva. The developed models thus can be effectively extended to establish bioequivalence for the marketed and novel complex formulations of Riva such as amorphous solid dispersions.

12.
Nanomedicine ; 33: 102368, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548477

RESUMO

The photodynamic anticancer activity of a photosensitizer can be further increased by co-administration of a flavonoid. However, this requires that both molecules must be effectively accumulated at the tumor site. Hence, in order to enhance the activity of zinc phthalocyanine (ZnPc, photosensitizer), it was co-encapsulated with quercetin (QC, flavonoid) in lipid polymer hybrid nanoparticles (LPNs) developed using biodegradable & biocompatible materials and prepared using a single-step nanoprecipitation technique. High stability and cellular uptake, sustained release, inherent fluorescence, of ZnPC were observed after encapsulation in the LPNs, which also showed a higher cytotoxic effect in breast carcinoma cells (MCF-7) compared to photodynamic therapy (PDT) alone. In vivo studies in tumor-bearing Sprague Dawley rats demonstrated that the LPNs were able to deliver ZnPc and QC to the tumor site with minimal systemic toxicity and increased antitumor effect. Overall, the photodynamic effect of ZnPc was synergized by QC. This strategy could be highly beneficial for cancer management in the future while nullifying the side effects of chemotherapy.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Isoindóis/química , Lipossomos/química , Nanopartículas/química , Compostos Organometálicos/química , Fármacos Fotossensibilizantes/química , Quercetina/química , Compostos de Zinco/química , Animais , Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Permeabilidade da Membrana Celular , Preparações de Ação Retardada , Liberação Controlada de Fármacos , Humanos , Isoindóis/administração & dosagem , Células MCF-7 , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Compostos Organometálicos/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Quercetina/administração & dosagem , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Compostos de Zinco/administração & dosagem
13.
Mol Pharm ; 18(3): 862-877, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33475378

RESUMO

The present study investigates the chemical composition governing the physical properties of mono- and diglycerides (MDGs) at the microstructural level, as a function of aging and lot-to-lot variability. The physical structure of the MDG plays a vital role in ameliorating the emulsion stability and is widely explored in diverse research horizons related to the pharmaceutical, cosmetic, and food industries. In an effort to understand the mechanism of emulsion stabilization, physical properties were extensively evaluated in selective commercial lots to determine if there is a correlation between the chemical composition of MDG and physical properties. The solid state of the MDG samples with different aging profiles was characterized using X-ray scattering, differential scanning calorimetry, attenuated total reflection-Fourier transform infrared spectroscopy, and NMR relaxometry. Moreover, the kinetic aspect of solid-state transformation was also evaluated via treating MDG samples with a heat-cool cycle. The chemical composition of MDGs was quantified using a quantitative NMR (qNMR) method. Interestingly, the X-ray scattering results demonstrated a change in the MDG polymorphic form and an increase in the %ß content as a function of aging. The increase in the %ß content led to the formation of rigid crystal structures of MDG, as evident from the NMR relaxometry. Chemical quantification of isomeric composition revealed chemical composition change as a potentially critical factor responsible for the altered physical structures of MDG with respect to aging and lot-to-lot variability. The findings correlated the solid-state transformation with the change in the chemical composition of the MDG as a combined effect of aging and lot-to-lot variability. This work serves as a basis to better understand the interdependency of the physicochemical properties of MDG. Furthermore, the present work can also be used as guidance for setting up the specifications of MDG, as per the required polymorphic form for a multitude of applications.


Assuntos
Diglicerídeos/química , Excipientes/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
14.
ACS Biomater Sci Eng ; 6(12): 6760-6769, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33320604

RESUMO

The current investigation illustrates high drug loading of Paclitaxel (PTX) in lipid- and biosurfactant-based core-shell-type nanocapsules for improving therapeutic potential and reducing toxicity of PTX. The nanocapsules were prepared using the antisolvent precipitation technique having a particle size of 253.8 ± 15.4 nm and drug loading of ∼19%. The microscopic evaluation revealed the spherical shape of the nanocapsules and corroborated with the particle size obtained from Zetasizer. It also revealed the drug core enveloped by the relatively lighter shadowed region, that is, the layer of lipids and the biosurfactant. The in vitro release study showed biphasic and sustained release pattern of PTX from core-shell-type nanocapsules. In case of nanocapsules, the cellular uptake in the MCF-7 cell line was augmented ∼3.17-fold as compared to free PTX. Further, it was evident from the cytotoxicity assay that nanocapsules displayed greater cytotoxicity in MCF-7 cells and ∼2.98-fold decrease in the IC50 value as compared to free PTX. The apoptotic index observed in case of nanocapsules was ∼2.04-fold higher than that of free PTX. Furthermore, the pharmacokinetic profile of nanocapsules revealed a ∼7.21-fold increase in t1/2 and a ∼3.27-fold higher AUC(0→∞) compared to Intaxel. Finally, treatment with PTX core-shell-type nanocapsules demonstrated significant cutback in the % tumor burden and serum toxicity markers compared to marketed formulation. Thus, the current approach of core-shell-type nanocapsules with high drug loading can improve the current standards of PTX therapy for treatment of cancer.


Assuntos
Neoplasias da Mama , Nanocápsulas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Lipídeos/uso terapêutico , Nanocápsulas/uso terapêutico , Paclitaxel/uso terapêutico
15.
AAPS PharmSciTech ; 22(1): 11, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33270172

RESUMO

Glycerides are the main components of oils, and fats, used in formulated products in the food and cosmetic industry as well as in the pharmaceutical product industry. However, there is limited literature available on the analysis of the chemical composition of glycerides. The lack of a suitable analytical method for complete chemical profiling of glycerides is one of the bottlenecks in understanding and controlling the change in chemical composition during processing, formulation, and storage. Thus, the aim of the present study is to develop a calibration-free quantitative proton nuclear magnetic resonance (qHNMR) method for the simultaneous quantification of different components of glycerides. The qHNMR method was developed for the quantification of mono-, di-, and triglycerides; their positional isomers; free fatty acids; and glycerol content. The accuracy, precision, and robustness of the developed method were evaluated and were found suitable for the quantitative analysis of five batches of marketed excipient. The study demonstrates the potential of qHNMR method for the quantification of different components of glycerides in various marketed products. The method has the ability to identify the variability of glycerides among different batches and suppliers in terms of chemical composition and also to discern the changes during storage.


Assuntos
Excipientes/química , Glicerídeos/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Triglicerídeos/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-32612988

RESUMO

The present study explores the influence of mycophenolic acid (MPA) in combination therapy with quercetin (QC) (impeding MPA metabolic rate) delivered using the liposomal nanoparticles (LNPs). Mycophenolic acid liposome nanoparticles (MPA-LNPs) and quercetin liposome nanoparticles (QC-LNPs) were individually prepared and comprehensively characterized. The size of prepared MPA-LNPs and QC-LNPs were found to be 183 ± 13 and 157 ± 09.8, respectively. The in vitro studies revealed the higher cellular uptake and cytotoxicity of combined therapy (MPA-LNPs + QC-LNPs) compared to individual ones. Moreover pharmacokinetics studies in female SD-rat shown higher T 1 / 2 value (1.94 fold) of combined therapy compared to MPA. Furthermore, in vivo anticancer activity in combination of MPA-LNPs and QC-LNPs was also significantly higher related to other treatments groups. The combination therapy of liposomes revealed the new therapeutic approach for the treatment of breast cancer.

18.
J Pharm Sci ; 109(8): 2454-2463, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353452

RESUMO

Isolators for aseptic filling of biopharmaceuticals and vaccine products are commonly sanitized by vaporized hydrogen peroxide (VHP). However, remaining traces of H2O2 may contaminate the solution and cause oxidative degradation of the pharmaceutical products. The present report aims to establish a thorough understanding of the factors influencing H2O2 adsorption on empty glass intended for pharmaceutical product filling. A lab-scale miniaturized set-up that mimics the VHP- based isolator decontamination process was used. A fractional factorial design of experiment (DoE) was performed including relative humidity (RH), VHP concentration and exposure time as variables. The results revealed that VHP concentration and RH both impacts significantly the extent of H2O2 adsorption on the surface of glass vials and rubber stoppers. The lower extent of H2O2 adsorption at elevated RH implies the existence of competitive co-adsorption. Thus, adsorbed H2O2 may be removed more efficiently from the isolator after the decontamination phase by insufflating air with a high %RH rate during the isolator's aeration phase. The understanding gained from the present set-up can be applied to optimize the design of isolator decontamination cycles and evaluate the trade-off between process performance and the resulting product quality.


Assuntos
Produtos Biológicos , Peróxido de Hidrogênio , Adsorção , Descontaminação , Vidro , Oxirredução
19.
Eur J Pharm Sci ; 147: 105278, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32135269

RESUMO

The present study investigates the drug release-governing microstructural properties of melt spray congealed microspheres encapsulating the drug crystals in the matrix of glyceryl behenate and poloxamer (pore former). The solid-state, morphology, and micromeritics of the microspheres were characterized, before and after annealing, using calorimetry, X-ray scattering, porosimetry, scanning electron microscopy, and, NMR diffusometry. The in vitro drug release from and water uptake by the microspheres were obtained. The extent and the rate of drug release from the microspheres increased with a high poloxamer content and at higher annealing temperature and RH. All the drug release profiles were describable using the Higuchi release kinetics pointing towards the diffusion controlled release, both before and after annealing. The annealing process led to the polymorphic conversion of lipid and the increase in the pore size, predominantly at a higher temperature and humidity and for a high poloxamer content. The poloxamer domain increased from an initial 300 nm, up to 2000 nm upon annealing. The water diffusion rate inside the annealed microsphere was twice as fast as for unannealed counterparts. The findings relate the overall phase and pore structure change of the microsphere to the increased drug release induced by annealing. This work serves as a basis for the rational understanding of the modification of the in vitro performance by annealing, a widely used post-process for solid lipid products.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Físico-Química , Liberação Controlada de Fármacos , Técnicas In Vitro , Lipídeos , Microesferas , Tamanho da Partícula , Poloxâmero/química , Tensoativos , Temperatura
20.
J Pharm Biomed Anal ; 178: 112893, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606565

RESUMO

The present work demonstrates the utility of temperature controlled set up with pressurized headspace oxygen as an approach to effectively reduce the time required for solid-state drug-excipient compatibility study. To illustrate the utility, the incompatibility of polyethylene glycol (PEG) and polyethylene oxide (PEO) with Famotidine (Fam) was shown. Owing to thermal and oxidative stress, polyethylene ether moieties of PEG generated reactive impurities, resulting in the degradation of Fam. The chemical degradation was evaluated via liquid chromatography. Around 20% of degradation was observed in the pressurized oxygen set up, whereas, no degradation was found in the absence of oxidative stress. On increasing the excipient fraction, the Fam degradation increased proportionally. Formation of aldehydes and free radicals from excipients were proposed as the precursors for Fam degradation. The generation of aldehydes and free radicals was confirmed by infrared and Electron Spin Resonance (ESR) spectroscopic analysis, respectively. Overall, the present study demonstrated the utility of pressurized oxygen set up as a rapid and routine tool for studying drug-excipient incompatibility at temperatures relevant drug-product manufacture.


Assuntos
Incompatibilidade de Medicamentos , Excipientes/química , Famotidina/química , Polietilenoglicóis/química , Química Farmacêutica/métodos , Cromatografia Líquida/métodos , Estudos de Viabilidade , Estresse Oxidativo , Oxigênio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA